Etiquetas

Mostrando las entradas con la etiqueta TIps. Mostrar todas las entradas
Mostrando las entradas con la etiqueta TIps. Mostrar todas las entradas

domingo, 3 de mayo de 2015

Unprivileged LXC en Debian Jessie

Linux Containers, o más conocidos como LXC son una joya relativamente reciente -hacen uso de los control groups o cgroups del kernel Linux- que permite correr un sistema operativo Linux dentro de los límites de un contenedor.
Correrlos como root suele ser directo, pero lo más recomendable es ejecutar todo el contenedor como un usuario sin privilegios. Dicha tarea no requiere demasiados esfuerzos en Ubuntu porque esa fue ajustada en detalle. En cambio, en Debian requiere bastante esfuerzo. Varios días, prueba y error compilando paquetes hasta poder conseguirlo ejecutar mis primeros contenedores sin privilegios en Debian. Estas son unas notas sobre el proceso, aún un work-in-progress.


Esta entrada no pretende ser un paso a paso sobre cómo crear contenedores unprivileged, sino más bien listar los prerequisitos necesarios para poder crearlos en Debian Jessie.
Uno de los mejores tutoriales es el de Stéphane Graber en este link: https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
Lo que ocurre es que para poder ejecutar contenedores en Debian debemos realizar algunos ajustes previos:

1) Kernel con las features necesarias

- Un kernel custom con las features necesarios. En este caso compilé un kernel 3.16.6 basandome en la configuración usada por Ubuntu. El archivo config puede encontrarse aquí: config-3.16.0-23-generic

Aquellos que busquen una guía para el build puede encontrarse una aquí: http://www.equiscentrico.com.ar/2012/07/compilar-un-kernel-la-debian.html

También una versión para i386 de esa configuración puede descargarse de: https://www.dropbox.com/s/wazs1fhgru2hyly/linux-image-3.16.6-lxc-rtx_3.16.6-lxc-rtx-10.00.Custom_i386.deb?dl=0

Y los headers pueden encontrarse: https://www.dropbox.com/s/z5udb1stt3q9gor/linux-headers-3.16.6-lxc-rtx_3.16.6-lxc-rtx-10.00.Custom_i386.deb?dl=0

2) systemd parchado para lxc "unprivileged"

Para que el usuario tenga control sobre los cgroups del lxc se requiere una versión bien reciente de systemd, 217-2 en adelante. Yo usé la versión 219, tomandola de la rama experimental de Debian:

Agregar los repo experimantal a APT (/etc/apt/sources.list):
deb http://ftp.debian.org/debian experimental main

Y luego instalar el paquete:

# apt-get update && apt-get -t experimental install systemd

Otro paquete importante es libpam-systemd. Los paquetes instalados pueden verse:

$ dpkg -l | grep systemd
ii libpam-systemd:i386 219-8 i386 system and service manager - PAM module
ii libsystemd0:i386 219-8 i386 systemd utility library
ii systemd 219-8 i386 system and service manager
ii systemd-sysv 219-8 i386 system and service manager - SysV links

3) Versión apropiada de LXC

En este punto es importante hacer notar lo siguiente: debe usarse una versión de LXC de los repos de Debian y no una compilada por uno mismo. Porque se incluyen en la de Debian algunos parches para que LXC se lleve bien con systemd, como puede verse abajo:


dpkg-source: información: extrayendo lxc en lxc-1.0.7
dpkg-source: información: desempaquetando lxc_1.0.7.orig.tar.xz
dpkg-source: información: desempaquetando lxc_1.0.7-3.debian.tar.xz
dpkg-source: información: aplicando «0001-lxcinitdir.patch»
dpkg-source: información: aplicando «0002-sysvinit-directory.patch»
dpkg-source: información: aplicando «0003-sysvinit-lsb-headers.patch»
dpkg-source: información: aplicando «0004-sysvinit-lsb-functions.patch»
dpkg-source: información: aplicando «0005-sysvinit-lsb-lock.patch»
dpkg-source: información: aplicando «0006-lxc-attach-sigint.patch»
dpkg-source: información: aplicando «0007-lxc-patch-shebang.patch»
dpkg-source: información: aplicando «0008-lxc-debian-fuse.patch»
dpkg-source: información: aplicando «0009-lxc-debian-openssh-server.patch»
dpkg-source: información: aplicando «0010-lxc-debian-root-password.patch»
dpkg-source: información: aplicando «0011-lxc-debian-systemd.patch»
dpkg-source: información: aplicando «0012-lxc-debian-sysfs.patch»

Como se ve, esos parches son fundamentales. Pasé mucho tiempo rompiéndome la cabeza con unos deb compilados a partir del upstream de lxc. Esos parches están para eso. Entonces, con la versión que Jessie tiene en sus repos de LXC: 1.0.6 va bien. Lo ideal sería poder usar una un poco más nueva, como 1.0.7 (fuentes de sid), eso voy a intentar dentro de poco.

4) Instalar cgmanager y verificar que esté demonizado

$ dpkg -l cgmanager
ii cgmanager 0.36-1 all

Para cgmanager estoy usando la versión 0.36, que creo que hasta este momento es la más reciente. El DEB que preparé está aquí: https://www.dropbox.com/s/dvkg8sugcpqdc72/cgmanager_0.36-1_all.deb?dl=0

Luego de instalarlo, asegurarse de que quede activado en los scripts de inicio:

c$ systemctl status cgmanager
● cgmanager.service - Cgroup management daemon
Loaded: loaded (/usr/lib/systemd/system/cgmanager.service; enabled; vendor preset: enabled)
Active: active (running) since dom 2015-05-03 20:12:15 ART; 2h 22min ago
Main PID: 814 (cgmanager)
CGroup: /system.slice/cgmanager.service
‣ 814 /usr/sbin/cgmanager -m name=systemd
matias@matuxntbk:~/RamosLinux/lxc$ ps aux | grep cgmanager
root 814 0.0 0.2 2912 2072 ? Ss 20:12 0:00 /usr/sbin/cgmanager -m name=systemd

5) script de inicio y configuración de red lxc-net

También en el dropbox guardé una copia del script de configuración de red, lxc-net que es el encargado de iniciar dnsmasq con la configuración necesaria para utilizar una red tipo "nat", en la que cada contenedor "guest" tendrá una interfaz virtual con una red "interna" que hará nat a la dirección IP del host.

https://www.dropbox.com/s/s4yl5jn30w1apot/lxc-net.tar.gz?dl=0

Luego copiar los archivos, iniciar el script:

# systemctl start lxc-net

Y verificar con bridge utils que la interfaz tipo bridge se haya creado:

matias@matuxntbk:~/RamosLinux/lxc$ /sbin/brctl show
bridge name bridge id STP enabled interfaces
lxcbr0 8000.000000000000 no

6) Preparar el ambiente, siguiendo el tutorial de Stéphane (https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/)

6.1) Conviene agregar al usuario que usaremos para los containers al archivo sudoers para que pueda ejecutar cgm:

# /etc/sudoers o visudo
lxcuser ALL=NOPASSWD:/usr/bin/cgm

6.2) preparar los permisos:

$ sudo cgm create all foo
$ sudo cgm chown all foo $(id -u) $(id -g)
$ cgm modepid all foo $$

Aqui utilizamos cgm (cgroup manager) para crear el cgroup foo, y mover a él el pid del running shell. Eso permitirá que los procesos susecuentes se ejecuten bajo ese cgroup.

Notas finales: este es un borrador de un trabajo aún en progresos. Hay que señalar que las versiones que se necesitan por ejemplo de systemd son realmente bleeding-edge. Siendo systemd un proceso crítico (de él depende toda la estabilidad del sistema) conviene probar en profundidad esta configuración antes de aventurarse a hacer un deploy a producción.

Continuar »

martes, 17 de febrero de 2015

En los *nix, los pipelines son un caño

Parte de la "filosofía" de Unix (o de la programación para sistemas *nix) puede resumirse según el principio "escribí programas que hagan una cosa, y que la hagan bien".
Los pipelines, "pipes" son el mecanismo que permite extender este principio combinando y comunicando distintos procesos, para que cada uno haga su tarea, de la mejor forma posible.
En esta entrada, la historia de la noche febril en que Ken Thompson escribió la llamada al sistema pipe() y un par de breves y mundanos ejemplos de uso de pipes en bash.


Una febril noche de 1973 y una orgía de one-liners

Dice Wikipedia ( Pipeline_(Unix) ) que el concepto de pipeline (el paso de la salida de un programa a la entrada de otro) fue inventado por Douglas McIlroy, uno de los autores de los primeros shells. McIlroy notó que buena parte del tiempo estaban dirigiendo la salida de un programa a la entrada de otro.
Sus ideas las implementó Ken Thopson en una "noche febril" de 1973, cuando agregó la llamada al sistema pipe() y el mecanismo de "pipe" | a shell, junto con varias utilitarios en la versión 3 de Unix. Al día siguiente surgieron los "one-liners" (entradas de una líneas que encadenaban varios programas): dice McIlroy "vi una orgía inolvidable de one-liners en la medida que cada uno se sumaba a la diversión de meter todo en un caño".

Comunicar procesos en Bash

Los "pipes" o "pipelines" son una de las formas más simples y básicas de comunicar procesos (IPC: "Inter Process Communication"). Una de las grandes ventajas de los shells *nix es la posibilidad de crear one-liners que son combinaciones de programas, que juntos hacen una tarea en la que cada uno contribuye.
Solo un ejemplo, tomado de www.bashoneliners.com:

$ /usr/bin/printf 'GET / \n' | nc yahoo.com.ar 80

En este ejemplo se puede grabar el html de yahoo.com.ar usando netcat como cliente. Esa era la orgía a la que McIlroy se refería.

Existen pipelines con nombre y pipelines sin nombre, los primeros son básicamente un tipo de archivo especial en el File System al cual cierto/s proceso/s pueden escribir y otros leer. Los pipeline sin nombre son los que más usamos en la cli, cuando se usa para dirigir la salida de un comando a la entrada de otro con el caracter '|'.
Un pipe funciona, oh sorpresa, como un archivo y puede leerse de la misma forma.
Sigue abajo un ejemplo con el que me divertí un rato y con la esperanza que le pueda servir al sr. @esturniolo:

#!/usr/bin/env bash
#### Script for testing porpouses. Showing unnamed pipes in bash
#### imagemagick must be installed, so: # aptitude install imagemagick.


function printUsage {
    echo >&2 'Error: no argument supplied.'
    echo >&2 "Usage $0 "
    echo >&2 "$0 will start looking for image files starting at the initial directory you supply"
exit 1

}

function checkDep {
    type $1 > /dev/null 2>&1
    if [ "$?" -ne 0 ]
    then
     echo >&2 "Dependency $1 not met. Install it!"
    exit 1
    fi
}
function main {
    echo "inicial dir=" $1
    COMMAND="find $1 -iregex .*\.\(jpg\|gif\|png\|jpeg\)$ -type f"
    $COMMAND | while read i
    do
    # Here you do whatever you want with each lined passed throgh the pipe.
    # That's the unix magic.
      echo $i
      # in this test we grab some data from image file properties.
      identify -format "%wx%h %[EXIF:DateTime] " $i
    done
    echo
}

# Test user input: parameter $1, which must be the initial dir.
if [ "$#" -eq 0 ]; then
    printUsage
fi
if [ ! -d $1 ]; then
    echo >&2 "$1 is not a valid directory, so it's none of my bussiness fellow."
    exit 1
fi

# For checking dependency pass bin/script to be checked as checkDep parameter:
checkDep identify
main $1

A este script se le pasa como único parámetro un directorio inicial para que busque recursivamente en él archivos de imágenes:

find $1 -iregex .*\.\(jpg\|gif\|png\|jpeg\)$ -type f

Donde $1 es el primer parámetro que se le pasa al script. Ejemplo:

$ ./test_stu.sh /home/retux/fotos

La magia de pipe:

$COMMAND | while read i
do
    # Here you do whatever you want with each lined passed throgh the pipe.
     # That's the unix magic.
     echo $i
     # in this test we grab some data from image file properties.
     identify -format "%wx%h %[EXIF:DateTime] " $i
done

Cada línea que find en este caso devuelva por su stdout es redirigida por un pipe y almacenada en la var $i. Luego podemos hacer o que querramos, en este caso se llama al programa identify para que imprima algunos atributos de cada imagen, cuando se le pasa su ubicación, contenida en $i.
Continuar »

lunes, 16 de febrero de 2015

Mantener ssh más seguro. Hoy: ssh-agent

Como sysadmins en ambientes corporativos o en nuestras redes hogareñas openssh es el protocolo capaz de encriptar absolutamente todos el tráfico y permitirnos la administración remota de hosts o vps de forma segura.

Usar ssh de manera predeterminada con autenticación por password puede ser peligroso. Por eso, auth asimétrica con keys es la solución.

El desconfiao' puede hacer la prueba. Colocar un host en internet que acepte autenticación por password. En algunas horas los logs evidenciarán que el host fue objeto a algún ataque de diccionario. Si además la config de sshd permite ogin del usuario root (como suele ser el default: PermitRootLogin yes) las consecuencias pueden ser fatales. Si la contraseña es débil y el ataque tiene éxito los miscreants se habrán hecho de acceso al host y con el usuario con mayores privilegios del sistema.
Estas líneas asustadoras sólo pretenden exponer la gravedad. Un protocolo sumamente seguro como ssh versión 2 puede ser vulnerado solo por una configuración "permisiva" del usuario.

En otra entrada de este blog me ocupé sobre cómo usar criptografía asimétrica (par de claves pública/privada) para autenticar ssh:

Aquella vez, para mantener las cosas simples, al momento de crear las claves con ssh-keygen no se establecía una passphrase para el acceso a la clave privada. Eso efectivamente hace las cosas sencillas si se va a usar scp u otro programa en scripts. Pero qué pasa si alguien lograra tener acceso a la clave privada: como no hay passphrase podría tener acceso a los hosts que tienen su clave pública en el archvio authorized_keys.

Para hacer mejor las cosas existe ssh-agent.

Como su manpage explica el objeto de ssh-agent es

ssh-agent es un programa que guarda las llaves privadas que se usan para autentificación por llave pública. En general ssh-agent se inicia como demonio al principio de una sesión X. Otros programas funcionarán como clientes de ssh-agent cuando requieran acceder a otros hosts vía ssh.
Las aplicaciones pueden localizar a ssh-agent a través de dos variables del entorno:

SSH_AGENT_PID

SSH_AUTH_SOCK

Por ejemplo, en mi Debian, el entorno de escritorio Enlightenment inicia el ssh-agent.
Para usarlo con autenticación ssh por clave pública el procedimiento es similar al descripto en pero en el momento de crear las llaves, se debe registrar una contraseña fuerte (passphrase) para el acceso a la llave privada.
Luego, con ssh-add agregaremos la llave privada a la gestión de ssh-agent:

$ ssh-add /home/retux/.ssh/id_rsa

Luego, podremos listar las llaves que ssh-agent gestiona. Obtendremos algo así:

$ ssh-add -l
2048 04:07:3f:a8:28:ca:e7:11:22:33:55:.... .ssh/id_rsa (RSA)

Así las cosas, ssh-agent nos pedirá la primera vez que intentemos acceder a ese host ingresar las passphrase, pero el programa se encargará de gestionarla, y en lo sucesivo, mientras dure la sesión no nos la pedirá nuevamente.
El resultado es similar a no registrar passphrase al crear las llaves con ssh-keygen, pero con el enorme agregado en lo que hace a la seguridad. Si un malhechor se hace de la llave privada deberá conocer la passphrase para tener acceso.
Continuar »

viernes, 21 de marzo de 2014

PAM establecer horarios de uso del sistema, ejemplo para contron paternal

Un tip "quick and dirty" fácil rápido y directo para limitar los horarios en los que ciertos usuarios del sistema pueden loguearse.
En conjunto con otras utilidades sirve para configurar eso llamado "control paternal".


El Linux, como otras variantes de *nix trae implementado PAM (Pluggable Authentication Modules), que básicamente es una API para autenticación de usuarios, pero además como su nombre lo indica PAM incluye varios módulos que con sus "botones y perillas" (configurables en archivos de config, claro) que permiten por ejemplo limitar la asignación de recursos que el kernel provee a cada usuario (ej. RAM, tamaño de la pila, CPU, etc). En ese caso el archivo de config es /etc/pam.d/limits.conf (véase man limts.conf).
Pero el tip rápido y furioso de hoy se ocupa de otro módulo: pam_time.so que nos permite configurar los horarios en que ciertos usuarios podrán loguearse al sistema.

En una entrada previa en Equiscéntrico me ocupé sobre cómo configurar iptables para que algunos usuarios usaran selectivamente los servidores DNS de openDNS y de esa forma establecer un filtro básico de sites no convenientes para niños ver: (http://www.equiscentrico.com.ar/2010/09/filtrar-facilmente-contenido-web.html ).
En otras ocasiones queremos establecer horarios en que los pibes puedan usar las compus, para que no le resten demasiado tiempo a otras actividades. Ahí es donde el módulo pam_time.so viene a nuestra ayuda.
Rápidamente, para activarlo tenemos que incluir la siguiente línea en al archivo /etc/pam.d/login (esa es su ubicación en Debian, en otras distros o sabores *nix debe ser similar). Y también en /etc/pam.d/kdm o el gestor de logins que use nuestro ambiente de escritorio, en este caso es kde.

# BOF modulo para limites horarios
account requisite pam_time.so
# EOF limites horarios

Editando estos dos archivos se activará la verificación de horarios tanto al loguin GUI como a las consolas. Lo más probable es que nuestros hijos usan más el entorno gráfico pero si uno de ellos usara más las consolas, convendría dejarle la compu libre las 24 hs :)
Hablando en serio, si acaso también quisiéramos limitar el acesso por horarios vía ssh habrá que configurarlo en el archivo correspondiente: /etc/pam.d/sshd.
Ahora tendremos que configurar los usuarios a los que queremos aplicar las restricciones, eso se hace en /etc/security/time.conf

Ejemplo:
# usuario 1 (dinix)
*;*;dinix;!Wk1115-1910
*;*;dinix;Wd0000-2400
# Usuario 2 (ada)
*;*;ada;!Wk1115-1910
*;*;ada;Wd0000-2400

Aquí configuramos que de lu-vi tanto el usuario dinix como ada no puedan loguearse entre las 11:15 y las 19:10 !Wk1115-1910 pero que los fines de semana (Wd) puedan loguearse las 24 hs. Errores que cometamos durante la config se puede seguir en el syslog.

Más info se puede obterner con man time.conf·

Una cosita más. Si el usuario ya se encuntra logueado al momento en que comienza la franja horaria restringida no hay un mecanismo que lo desloguee automáticamente. Eso debe implementarse, por ejemplo desde un script disparado por crontab para complementar este módulo de PAM.
Este fue un tip "quick and dirty". Si hay errores, sugerencias, el feedback es siempre bienvenido.
Continuar »

viernes, 7 de febrero de 2014

Crear un paquete DEB a partir de código fuente "upstream"

Siempre lo dije y lo seguiré sosteniendo: una de las cosas que mejor resumen la idea de belleza y eficiencia es el sistema de empaquetamiento de Debian, que así en español no suena del todo bien, hablamos del Debian Package Management System.
Sigue un tip muy breve sobre cómo crear un .deb instalable a partir de un tarball de código fuente "upstream".


Uno de los aspectos de la belleza de DPKG, la base del Debian Management System es la manutención y actualización de los paquetes. Tener idea de los paquetes que tenemos instalados en un servidor o en una estación es rápido y simple, mucho más rápido que tener que hacer find por directorios como /usr/local, /opt.
Por eso siempre es recomendable, de ser posible, usar el sistema de empaquetamiento antes que instalar soft, por ejemplo usando make install (el paso culminante de la compilación de soft con Make: configure, make, make install).
Unas razones por las que es mejor el sistema de empaquetamiento es simple. Si quisiéramos desinstalar el paquete es simplemente dpkg -r, o apt-get remove... y el sistema de gestión de paquetes se va a encargar de borrar los archivos necesarios, y listo.

En otro tip vimos cómo compilar y crear un deb fácilmente cuando el código fuente está en los repositorios Debian
http://www.equiscentrico.com.ar/2011/06/como-crear-paquetes-deb-partir-de.html

¿Y si solo tenemos un .tar.[gb]z ?

A no desesperar. dh_make es el dueño de la magia. Este programa forma parte del paquete debhelper, que es el juego de herramientas para la creación de debs.

Para ejemplificar voy a usar el código fuente de piklab, que es un IDE para el desarrollo en Microcontroladores PIC, que no encontraba en los repositorios de wheezy. Su código fuente se puede encontrar aquí http://sourceforge.net/projects/piklab/files/
Una vez que lo descargamos, y descomprimimos:

$ bzip2 -dc piklab-0.16.2.tar.bz2 | tar xvf -

dh_make va a hacer la magia:

$ cd piklab-0.16.2
$ dh_make -f ../piklab-0.16.2.tar.bz2

dh_make va a crear todos los archivos para la debianización.

Opcionalmente, antes de hacerlo se pueden fijar algunas variables del entorno, para que los datos del "mantainer" como correo y nombre queden ok. En este ejemplo estamos creando un deb para uso propio o distribución en una empresa. Si el paquete fuera a formar parte de los repositorios Debian debe cumplir toda una serie de requisitos extra.
Una vez que dh_make hizo su magia, ahora sí, compilamos (desde dentro del dir del fuente):

$ dpkg-buildpackage -us -uc

A tomar algo y luego obtendremos el .deb (atenti con todas las dependencias que requiera el soft):

dpkg-deb: construyendo el paquete `piklab' en `../piklab_0.16.2-1_i386.deb'.
dpkg-genchanges >../piklab_0.16.2-1_i386.changes
dpkg-genchanges: incluyendo el código fuente completo en la subida
dpkg-source --after-build piklab-0.16.2
dpkg-buildpackage: subida completa (se incluye la fuente original)

Podemos instalarlo:

# dpkg -i piklab_0.16.2-1_i386.deb
Seleccionando el paquete piklab previamente no seleccionado.
(Leyendo la base de datos ... 311105 ficheros o directorios instalados actualmente.)
Desempaquetando piklab (de piklab_0.16.2-1_i386.deb) ...
Configurando piklab (0.16.2-1) ...
Procesando disparadores para man-db ...
Procesando disparadores para hicolor-icon-theme ...
Procesando disparadores para shared-mime-info ...
Unknown media type in type 'all/all'
Unknown media type in type 'all/allfiles'
Unknown media type in type 'uri/mms'
Unknown media type in type 'uri/mmst'
Unknown media type in type 'uri/mmsu'
Unknown media type in type 'uri/pnm'
Unknown media type in type 'uri/rtspt'
Unknown media type in type 'uri/rtspu'
Procesando disparadores para desktop-file-utils ...

Para aquel que todavía no lo crea: Ain't it nice?


Matías Gutiérrez Reto (retux)
Continuar »

miércoles, 1 de enero de 2014

go-mtp para conectar smartphone android a Linux usando mtp

En los actuales smartphones basados en Android fue triste la decisión de abandonar el soporte como "almacenamiento masivo" para transferencia de archivos entre un pc y el móvil para reemplazarlo por mtp (Media Transfer Protocol), desarrollado originariamente por Microsoft.


Me llevó varias horas de trabajo. Compilar libmtp a la versión 1.1.6. Para hacerlo fácil, en Debian puede seguirse el procedimiento descripto en esta entrada de equiscentrico: http://www.equiscentrico.com.ar/2011/06/como-crear-paquetes-deb-partir-de.html sólo bastará reemplazar el nombre del paquete de ejemplo (era midori en aquel caso) por libmtp.

Después probé varias alternativas: kio-mtp, mtpfs... ambos compilados a sus versiones más recientes en los repositorios de fuentes de Sid. En un Samsung S2 el funcionamiento era estable, pero en un Samsung Trend (supongo que debe tener un Android algo más nuevo (?) no había caso.

go-mtp fue el camino

Conviene asegurarse que nuestro usuario pertenezca a los grupos "plugdev" y "fuse":

$ groups
retux dialout cdrom audio video plugdev fuse wireshark

Instalar go-mtp

En el gitHub del proyecto se puede bajar el paquete https://github.com/hanwen/go-mtpfs y como indica la documentación, la compilación del programa es sencilla:

1) Instalación de go-mtp:

# apt-get install golang-go
# apt-get install libusb-1.0-0-dev

$ mkdir /tmp/go
$ export GOPATH=/tmp/go
$ go get github.com/hanwen/go-mtpfs

En el directorio /tmp/go/bin/go-mtpfs tendremos el binario.

Podemos copiarlo a un directorio permanente:

# cp /tmp/go/bin/go-mtpfs /usr/local/bin



2) Usando go-mtp

2.1) Creamos un directorio como punto de montaje

# mkdir /media/samsung
# chown retux /media/samsung

Obviamente, reemplazando "retux" por el nombre de usuario que corresponda.

La magia de go-mtp (conectando el teléfono al usb previamente, claro):

$ go-mtp /media/samsung &
2014/01/01 15:35:00 starting FUSE.

Véase el mensage que indica el inicio de FUSE. Si aparece, ya tendremos accesible el sistema de archivos del teléfono vía mtp:

$ ls /media/samsung/Phone/
Alarms data-app gameloft GoLocker_in GOWeatherEX Music Podcasts TalkingFriends
Android DCIM GOLauncherEX GoStore media Notifications Pou WhatsApp
AppGame Download golocker GoTheme Movies Pictures Ringtones

Una vez que lo hayamos usado, solo basta desmontarlo:

$ fusermount -u /media/samsung
Continuar »

jueves, 26 de diciembre de 2013

Cross-compile para Raspberry Pi con scratchbox2 - Un borrador

En realidad, estas notas son apenas un borrador.
Llevo un tiempo haciendo cross-compile del kernel linux para raspberry pero siempre compilar algún programa en C++ propio me había resultado muy complicado.
Hoy decidí probar con scratchbox2 y este es el borrador del "work-in-progress". La verdad parece muy util y directo que otro acercamiento.

Como dije, esto es un borrador, no un tutorial. Por eso si alguien encuentra errores, o conoce scratchbox más en profundidad cualquier aporte será bienvenido. Es un borrador, porque además fui haciéndolo en días sucesivos, por lo tanto podría haber algun/os error/es.

Decidí utilizar los paquetes más estándares posibles, disponibles en los repositorios de Debian Wheezy.
El sistema "host" es un i386, mientras que el "target", lógicamente será un armv6, el tipo de arquitectura de CPU de la Raspberry Pi.
Por lo que leí, resumido brevemente, la gran ventaja de scratchbox es que es una jaula fakeroot en la que se instalará un fs root de raspbian y allí podremos ir instalando las dependencias (librerías) que el soft que vayamos a compilar requiera. Scratchbox y qemu serán los encargados de mantener la magia, es decir, compilar para la arquitectura "target" e inclusive ejecutar código compilado para arm en la CPU "host". Con algunos ejemplos creo que se puede ver mejor:

1) Instalación de los paquetes necesarios:

# aptitude install scratchbox2 fakeroot realpath qemu-user

2) Instalación del toolchain

El "toolchain" para compilación cruzada podría compilarse, pero lo más directo es usar las rpi-tools, disponibles en este repositorio git.

$ mkdir -p $HOME/raspi_build/rpitools/ && cd $HOME/raspi_build/rpitools/
$ git clone https://github.com/raspberrypi/tools.git --depth 0

Tomemos nota del directorio donde lo instalamos y a seguir

3) Extracción del rootfs de raspbian

Para crear el ambiente que scratchbox precisará para su magia, vamos a copiar de una imagen de raspbian el sistema de archivos raíz (rootfs), que normalmente está en la segunda partición de la imagen de la SD:

Para esto usé una imagen más o menos actual de raspbian: 2013-07-26-wheezy-raspbian.img


$ mkdir -p $HOME/sb2_lab/mnt
$ cd $HOME/sb2_lab
$ mkdir raspbian-rootfs
Crear el dir de trabajo donde se prefiera, claro y copiar allí la img de raspbian.

$ cd $HOME/sb2_lab
$ /sbin/fdisk -lu 2013-07-26-wheezy-raspbian.img

Disco 2013-07-26-wheezy-raspbian.img: 1939 MB, 1939865600 bytes
255 heads, 63 sectors/track, 235 cylinders, 3788800 sectores en total
Units = sectores of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Identificador del disco: 0x00047c7a

Disposit. Inicio Comienzo Fin Bloques Id Sistema
2013-07-26-wheezy-raspbian.img1 8192 122879 57344 c W95 FAT32 (LBA)
2013-07-26-wheezy-raspbian.img2 122880 3788799 1832960 83 Linux
Veamos, que la partición tipo linux comienza en el sector 122880, y cada sector tiene 512 bytes. Con eso vamos a montar el loop device para copiar los archivos.
Hagamos el cálculo:
$ echo "512 * 122880" | bc
62914560


Para montar el loop device, tenemos que hacerlo como root y le pasamos el offset que calculamos:

# mount -o ro,loop,offset=62914560 -t auto 2013-07-26-wheezy-raspbian.img mnt/

A copiar:

$ cd $HOME/sb2_lab/
$ rsync -avz mnt/ raspbian-rootfs

Ahora en el subdir ./raspbian-rootfs tendremos el rootfs de raspbian

$ ls raspbian-rootfs/
bin boot dev etc home lib lost+found media mnt opt proc root run sbin selinux srv sys tmp usr var


4) Iniciar el ambiente de scratchbox

Ingresamos al directorio donde copiamos el rootfs de raspbian, de otra manera sb2 no podrá iniciar bien el toolchain.
Vamos iniciar el ambiente para Scratchbox2, pasandole la ubicación de gcc en la versión del toolchain para Cross-Compile que habíamos bajado:

$ cd $HOME/sb2_lab/raspbian-rootfs
$ sb2-init raspberrypi_wheezy
/home/matias/raspi_build/rpitools/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-gcc

Al final del proceso aparecerá:

"sb2-init completed successfully, have fun!"

Si no aparece, a desconfiar de algo y revisar.
Con eso ya tenemos el ambiente listo. Ahora, a probarlo.

5) Compilando algo para probar

Creemos el siguiente código, solo para probar. Puede ser en el directorio de trabajo o en cualquier otro:

/* Archivo: teste.c - Solo para probar sb2 */
#include <stdio.h>
int main(){
printf("Hello, #RasPi\n");
return 0;
}

Lo llamé teste.c, vamos a compilarlo dejando que scratchbox haga su magia:

$ sb2 gcc -o teste teste.c

Ahora veamos la info sobre el binario que creó:

$ file teste
teste: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.26, BuildID[sha1]=0x2c11b259c80ffd4ceccb9a2a0622fb12571858f7, not stripped

$ readelf -a teste | grep -i "cpu\|mach"
Machine: ARM
Tag_CPU_name: "6"
Tag_CPU_arch: v6
Tag_CPU_unaligned_access: v6

Como se ve, la arquitectura de destino fue, en efecto, arm v6.
Ahora, con la ayuda de qemu scratchbox permite hasta ejecutar el binario arm en el sistema "host" (i386):

$ sb2 ./teste
Hello, #RasPi

6) Probar compilar algo del mundo "real"

Por ahora, todo muy lindo. Pero el código de ejemplo es tan básico que precisa de librarías estándares y mínimas.
Probé lo siguiente, que me estaba dando mucho laburo compilar sin usar scratchbox.
El código siguiente es muy simple, es parte de unas clases que usé y modifiqué un poquito para controlar los leds de "status" de una raspberry. Los leds indican si el sistema completó el boot y monitorea el estadod e ethernet. Es algo bastante útil si se usa una RasPi sin monitor, para tener una idea de su estado si necesidad de ping, conectar por ssh, etc.

$ git clone https://github.com/retux/raspileds_status --depth 0
Cloning into 'raspileds_status'...
remote: Counting objects: 56, done.
remote: Compressing objects: 100% (44/44), done.
remote: Total 56 (delta 11), reused 50 (delta 5)
Unpacking objects: 100% (56/56), done.

Originariamente, había compilado estos binarios directo en la raspi. Porque la verdad el tiempo de compilación es mínimo. Ahora compilarlo con ScratchBox fue muy sencillo:


$ cd raspileds_status
$ sb2 make clean
rm -f *.o
$ sb2 make
g++ -Wall -c -o GPIOClass.o GPIOClass.cpp
g++ -Wall -c -o netifledwatch.o netifledwatch.cpp
g++ -Wall -o netifledwatch GPIOClass.o netifledwatch.o
g++ -Wall -c -o gpiopinctrl.o gpiopinctrl.cpp
g++ -Wall -o gpiopinctrl GPIOClass.o gpiopinctrl.o
g++ -Wall -c -o gpioctrl.o gpioctrl.cpp
g++ -Wall -o gpioctrl GPIOClass.o gpioctrl.o

Veamos alguno de los binarios para confirmar:
$ file netifledwatch
netifledwatch: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.26, BuildID[sha1]=0xd7cb48d849ae94101dbd00c1ad28f67f0f56048b, not stripped

Como se ve, la magia de ScratchBox hizo posible que ni siquiera fuera necesario modificar el Makefile.

¿Qué sigue?

Queda por ver cómo se puede usar las maravillas de apt-get en el ambiente scratchbox, por ejemplo, para instalar dependencias necesarias para compilar soft más complejo. No lo probé aún, pero tiene que poder hacerse.

Agregado 27/12/2013:

Con la imagen de raspbian reciente que estoy usando para el ambiente chroot de scratchbox, es necesario comentar la línea del archivo ld.so.preload, porque de lo contrario algo de la emulación con qemu se rompía y no permitía por ejemplo ejecutar un apt-get update dentro del ambiente chroot.

$ cat raspbian-rootfs/etc/ld.so.preload
#/usr/lib/arm-linux-gnueabihf/libcofi_rpi.so

Después de eso, se puede ejecutar apt-get update e instalar paquetes en el ambiente, sin problemas:

$ sb2 -eR apt-get update
Get:1 http://mirrordirector.raspbian.org wheezy Release.gpg [490 B]
Get:2 http://mirrordirector.raspbian.org wheezy Release [14.4 kB]
Get:3 http://raspberrypi.collabora.com wheezy Release.gpg [836 B]
Get:4 http://archive.raspberrypi.org wheezy Release.gpg [490 B]
...

$ sb2 -eR apt-get install vim
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
libgpm2 vim-runtime
...

¿Lindo, no es cierto? De esta forma podrían instalarse con apt-get las libs y dependencias para compilar el soft X e intentar el cross-compile con Scratchbox.

Agregado 30/12/2013:

Correr apt-get y todas sus maravillosas luces y botoncitos dentro del ambiente chroot de scratchbox2, por eso siguen una líneas con el procedimiento usado:

Primero entramos en la emulación de Scratchbox con el siguiente comando:
$ sb2 -eR
[SB2 emulate raspberrypi_wheezy] root@debian-test-kput raspbian-rootfs #

Vemos que estamos en el ambiente chroot, lo que nos informa el prompt.

Segundo, instalamos las claves públicas de los repositorios:

[SB2 emulate raspberrypi_wheezy] root@debian-test-kput raspbian-rootfs # wget http://archive.raspbian.org/raspbian.public.key -O - | apt-key add -
--2013-12-30 15:28:47-- http://archive.raspbian.org/raspbian.public.key
Resolviendo archive.raspbian.org (archive.raspbian.org)... 5.153.225.206, 2001:41c9:1:3ce::10
Conectando con archive.raspbian.org (archive.raspbian.org)[5.153.225.206]:80... conectado.
Petición HTTP enviada, esperando respuesta... 200 OK
Longitud: 1776 (1,7K) [application/octet-stream]
Grabando a: “STDOUT”

100%[======================================================================================>] 1.776
--.-K/s en 0s

2013-12-30 15:28:47 (13,0 MB/s) - escritos a stdout [1776/1776]
OK

[SB2 emulate raspberrypi_wheezy] root@debian-test-kput raspbian-rootfs # wget http://archive.raspberrypi.org/debian/raspberrypi.gpg.key -O - | apt-key add -

2013-12-30 15:52:34 (12,2 MB/s) - escritos a stdout [1719/1719]

OK

[SB2 emulate raspberrypi_wheezy] root@debian-test-kput raspbian-rootfs # wget http://raspberrypi.collabora.com/collabora-raspbian.gpg -O - | apt-key add -
--2013-12-30 16:01:35-- http://raspberrypi.collabora.com/collabora-raspbian.gpg
Resolviendo raspberrypi.collabora.com (raspberrypi.collabora.com)... 93.93.128.223
Conectando con raspberrypi.collabora.com (raspberrypi.collabora.com)[93.93.128.223]:80... conectado.
Petición HTTP enviada, esperando respuesta... 200 OK
Longitud: 3145 (3,1K) [text/plain]
Grabando a: “STDOUT”

100%[======================================================================================>] 3.145 --.-K/s en 0s

2013-12-30 16:01:35 (22,6 MB/s) - escritos a stdout [3145/3145]

OK


Conclusión provisional

Con apt-get completo corriendo, pudiendo instalar dependencias para aquello que vayamos a compilar scratchbox2 es una belleza.
Inclusive, hace hasta innecesario y menos eficaz tener necesidad de emular un raspbian (o cualquier otra distro) en un x86, porque basta hacer:

$ sb2 -eR

Y ya estamos en el ambiente chroot, desde donde podremos ejecutar los binarios compilados para arm, cuyas instrucciones serán reinterpretadas y traducidas por qemu.
Continuar »

viernes, 20 de diciembre de 2013

Correr Raspian en una máquina virtual (qemu) y redimensionar su Sistema de Archivos (FS)

Si bien, la Raspberry Pi es de las cosas más transportables en este mundo, a veces nos la olvidamos. Contra ese olvido y otras aplicaciones puede servir correr Raspbian u otra distribución para arm1176 desde qemu.
A mí me resulta útil para probar algunas cosas sin tener que andar reescribiendo repetidamente en una SD, o para compilar algún programa que vaya a correr en la Raspberry desde un i386.
También esto puede servir para ajustar y customizar una imagen del S.O a nuestro gusto, darle el tamaño adecuado y después transferirla a memorias SDs.
Siguen algunos tips al respecto.

Como muchos sabrán QEMU es el acrónimo de "Quick Emulator", es un hypervisor que realiza emulación de hardware. Sirve para "traducir" binarios compilados de una arquitectura para correrlos en otra arquitectura de CPU o bien para correr una máquina virtual completa. Para esto último es que lo usaremos, para que nuestra VM sea una Raspberry corriendo en i386 o derivados.
Sin más introducciones, manos a la obra.
Las instrucciones para usar qemu con la variante arm de las Raspberry Pi puede encontrarse aquí:

http://xecdesign.com/qemu-emulating-raspberry-pi-the-easy-way/ En español y resumiendo el procedimiento puede resumirse de la siguiente forma:

1) Preparar el ambiente

Crear el directorio de trabajo.
Descargar el kernel "custom" para funcionar con qemu-arm:

wget http://xecdesign.com/downloads/linux-qemu/kernel-qemu

2) Bajar la imagen de Raspbian que vamos a usar como base

La imagen puede ser Raspbian o cualquier otra distro para RasPi. En el caso de Raspbian se puede descargar desde http://www.raspberrypi.org/downloads

Descompactar la imagen, de modo que quede, por ejemplo: 2013-09-25-wheezy-raspbian.img


3) Si no tenemos qemu instalado, instalarlo

En mi caso en el sistema "host" es un i386 con Debian, para instalar el paquete de qemu:
# aptitude install qemu-system

4) Ver que tengamos todo lo necesario

Primero verificamos que la versión de qemu fue compilada con soporte para arm1176

$ qemu-system-arm -cpu ?
Available CPUs:
arm1026
arm1136
arm1136-r2
arm1176
arm11mpcore
arm926
arm946
cortex-a15
cortex-a8
cortex-a9
cortex-m3
pxa250
pxa255
pxa260
pxa261
pxa262
pxa270
pxa270-a0
pxa270-a1
pxa270-b0
pxa270-b1
pxa270-c0
pxa270-c5
sa1100
sa1110
ti925t
any

En negrita puede verse que el paquete por defecto para Debian soporta arm1176, la arquitectura de la CPU de la Raspberry.
Si tenemos la imagen del S.O (Raspbian o el que fuere) y el kernel (archivo kernel-qemu), tenemos todo listo.


Como dice el tuturial citado, basta correr la siguiente línea en el directorio de trabajo para bootear el Raspbian:

$ qemu-system-arm -kernel kernel-qemu -cpu arm1176 -m 256 -M versatilepb -no-reboot -serial stdio -append "root=/dev/sda2 panic=1 rootfstype=ext4 rw" -hda 2012-12-16-wheezy-raspbian.img
Véase: -m 256 indica cuántos Megabytes de la memoria de la máquina host (i386) le asignaremos a la MV Guest ("RasPi", digamos). Yo llegué a probar hasta con um mínimo de 64Mb (sin correr X) y todo fue bien.

PERO: en versiones más recientes de la imagen de raspbian (ejemplo, la que usé para este tutorial que es la 2013-09-25-wheezy-raspbian.zip) es necesario agregar el siguiente paso extra:

En el dir de trabajo creamos un sub-dir para punto de montaje de la imagen:
$ mkdir mnt
$ /sbin/fdisk -lu 2013-09-25-wheezy-raspbian.img
GNU Fdisk 1.2.4
Copyright (C) 1998 - 2006 Free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.


Disk /mnt/backup/RaspberryPi/qemu-vms/raspbian/2013-09-25-wheezy-raspbian.img: 2 GB, 2961100800 bytes
255 heads, 63 sectors/track, 360 cylinders, total 5783400 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/mnt/backup/RaspberryPi/qemu-vms/raspbian/2013-09-25-wheezy-raspbian.img1 8192 122879 64228 c FAT32 LBA
Warning: Partition 1 does not end on cylinder boundary.
/mnt/backup/RaspberryPi/qemu-vms/raspbian/2013-09-25-wheezy-raspbian.img2 122880 5785599 2835472 83 Linux
Warning: Partition 2 does not end on cylinder boundary.

El dato que nos interesa es el bloque de inicio de la segunda partición, que es donde está el sistema. Como el tamaño de los bloques es 512 bytes deberemos pasarle el offset a losetup haciendo el cálculo 122880 * 512:

# losetup -f --show -o `echo "122880 * 512" | bc` 2013-09-25-wheezy-raspbian.img
/dev/loop0
# mount /dev/loop0 mnt
# ls mnt
bin boot dev etc home lib lost+found media mnt opt proc root run sbin selinux srv sys tmp usr var

Primero, creamos el loop device, y después lo montamos en el dir mnt.

# vim mnt/etc/ld.so.preload

En ese archivo es necesario comentar la única línea que lo compone:

#/usr/lib/arm-linux-gnueabihf/libcofi_rpi.so

# umount mnt
# losetup -d /dev/loop0

Esto último es importante, porque de lo contrario el raspbian en la MV no iniciará.

Fuente: http://www.raspberrypi.org/phpBB3/viewtopic.php?f=29&t=37386&p=311360#p311360

Redimensionando la imagen, para que la SD "virtual" sea más grande

Así como establecía el tuto http://xecdesign.com/qemu-emulating-raspberry-pi-the-easy-way/ ya podremos correr Raspbian virtualizado. El problema es que resta redimensionar la imagen de la SD, la cual viene reducida a 1.8Gb aproximadamente. Si no la redimensionamos el sistema no nos servirá de mucho, ya que le queda muy poco espacio disponible en el File System para, por ejemplo, instalar soft nuevo.
Dicho esto, vamos a "hacer" una SD "virtual" más grande, digamos de unos 4Gb:

1) Crear uma img "contenedora"

$ dd if=/dev/zero of=4gbraspi.img bs=1M count=4000
4000+0 registros leídos
4000+0 registros escritos
4194304000 bytes (4,2 GB) copiados, 59,7716 s, 70,2 MB/s

Como siempre digo, mucho cuidado con dd. Especialmente cuando estamos obligados a correrlo como root. Por eso, es bueno tener una máquina de "laboratorio" para hacer estas cosas que no sea una máquina "de trabajo". Por eso, el resto lo hacés a tu propia cuenta y riesgo. En este texto el caracter '$' indica que el comando puede ejecutarse como usuario plano y '#' indica que debe ejecutarse como root (con muuucho cuidado).
/dev/zero es un archivo especial del sistema, que cuando se lo lee siempre devuelve el caracter \0 (NULL).

2) Copiar la imagen original a la nuestra

2.1) Preparamos los loop devices:

Vamos a utilizar las "loop device" tools que son las encargadas de la enorme magia de permitirnos leer la imagen del FS como si fueran nodos de dispositivos. En la práctica eso se entiende mejor:

# losetup -f --show 4gbraspi.img
/dev/loop0
# losetup -f --show 2013-09-25-wheezy-raspbian.img
/dev/loop1

Véase que en /dev/loop tenemos nuestra imagen SD "nueva" y en /dev/loop1 tenemos la imagen de raspbian original.

2.2) Copiamos los datos a nuestra "nueva" imagen OJO, es como root

# dd if=/dev/loop1 of=/dev/loop0
5785600+0 registros leídos
5785600+0 registros escritos
2962227200 bytes (3,0 GB) copiados, 227,464 s, 13,0 MB/s

2.3) Podemos "desmontar" la imagen original, que ya no usaremos:

# losetup -d /dev/loop1

Llegado a este punto podríamos bootear con qemu nuestra imagen, pero no tendrá nada nuevo, porque el espacio restante estará repleto de bytes NULL. Entonces vamos a redimensionar la partición ext4 de la imagen raspbian y su File System para que ocupen todo el espacio restante.

3) A redimensionar

3.1) Veamos el tamaño total de la imagen (SD "virtual"):

# fdisk -l /dev/loop0
GNU Fdisk 1.2.4
Copyright (C) 1998 - 2006 Free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.


Disk /dev/loop0: 4 GB, 4186667520 bytes
255 heads, 63 sectors/track, 509 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/loop0p1 1 8 64228 c FAT32 LBA
Warning: Partition 1 does not end on cylinder boundary.
/dev/loop0p2 8 361 2835472 83 Linux
Warning: Partition 2 does not end on cylinder boundary.

Vamos a agrandar la partición de Linux (tipo ext4) a todo el tamaño de la imagen, para eso usamos la herramienta parted:

# parted /dev/loop0
GNU Parted 2.3
Using /dev/loop0
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: (file)
Disk /dev/loop0: 4194MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
1 4194kB 62,9MB 58,7MB primary fat16 lba
2 62,9MB 2962MB 2899MB primary ext4

(parted) rm 2
(parted) mkpart primary 62.9 4194
(parted) print
Model: (file)
Disk /dev/loop0: 4194MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size Type File system Flags
1 4194kB 62,9MB 58,7MB primary fat16 lba
2 62,9MB 4194MB 4131MB primary ext4
(parted) quit
En negrita se indican los comandos en la consola de parted. Primero borramos la partición 2 (que originariamente iba hasta los 2962 MB) y luego la redefinimos com mkpart, iniciándose en los 62,9 MB y hasta los 4194, que es el tamaño total del dispositivo, como lo indicaba parted también.
Con esto la partición ya está redimensionada. Solo queda redimensionar el File System, para que la ocupe por completo.


4) Redimensionar el File System ext4

Debemos buscar el punto de inicio de la partición ext4 para pasárselo al offset de losetup
# fdisk -lu /dev/loop0
GNU Fdisk 1.2.4
Copyright (C) 1998 - 2006 Free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.


Disk /dev/loop0: 4 GB, 4186667520 bytes
255 heads, 63 sectors/track, 509 cylinders, total 8177085 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/loop0p1 8192 122879 64228 c FAT32 LBA
Warning: Partition 1 does not end on cylinder boundary.
/dev/loop0p2 122880 8191999 4032315 83 Linux
Warning: Partition 2 does not end on cylinder boundary.

El número que nos importa es 122880, que es el sector donde comienza la segunda partición.
Lo multiplicamos por el tamaño de cada sector:

# echo '122880 * 512' | bc
62914560

62914560 es el offset que tenemos que pasarle a losetup:

# losetup -f --show -o 62914560 4gbraspi.img
/dev/loop1

Corremos un fsck para verificar la integridad del FS:

# e2fsck -f /dev/loop1
e2fsck 1.42.5 (29-Jul-2012)
Paso 1: Verificando nodos-i, bloques y tamaños
Paso 2: Verificando la estructura de directorios
Paso 3: Revisando la conectividad de directorios
Paso 4: Revisando las cuentas de referencia
Paso 5: Revisando el resumen de información de grupos
/dev/loop1: 72857/177056 files (0.1% non-contiguous), 427737/707840 blocks

Y, finalmente redimensionamos el F.S:

# resize2fs /dev/loop1
resize2fs 1.42.5 (29-Jul-2012)
Resizing the filesystem on /dev/loop1 to 1008640 (4k) blocks.
The filesystem on /dev/loop1 is now 1008640 blocks long.

Desmontamos los loops devices:

# losetup -d /dev/loop1
# losetup -d /dev/loop0

Y podemos probar nuestra "nueva" imagen:

$ qemu-system-arm -kernel kernel-qemu -cpu arm1176 -m 256 -M versatilepb -no-reboot -serial stdio -append "root=/dev/sda2 panic=1 rootfstype=ext4 rw" -hda 4gbraspi.img

Una vez iniciada nuestra VM podremos ver que nuestra "SD" virtual ahora tiene el tamaño que definimos (en este ejemplo 4Gb aprox., pero eso va a gusto de cada cual, claro)

~$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 3.8G 1.7G 2.0G 47% /
/dev/root 3.8G 1.7G 2.0G 47% /
devtmpfs 62M 0 62M 0% /dev
tmpfs 13M 184K 13M 2% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 25M 0 25M 0% /run/shm

Si bien en este tuto usamos raspbian, el procedimiento debiera ser muy pero muy similar si se usa otra distro para Raspberry Pi.
Continuar »

viernes, 6 de diciembre de 2013

Optimizando recursos migrando a ngetty como terminales virtuales ttys

Linux es heredero de Unix, el sistema operativo creado por Dennis Ritchie y Ken Thompson en los Bell Labs de AT&T a fines de los años '60. Por eso, algunas "cosas" que Linux aún corre, vienen de larga data, son producto del desarrollo colectivo de muchas muchas personas. Getty es uno de esos procesos, que se encargan de las llamadas tty o terminales virtuales. En este post sigue un procedimiento para ahorrar significativamente memoria RAM migrando de getty a ngetty.


Getty es el proceso encargado de la gestión de las terminales virtuales (tty). Como Unix, getty tiene una historia larga: su nombre proviene de "Get Teletype", porque antiguamente las consolas que se conectaban eran teletipos. La tarea de getty es detectar una conexión y proceder al login.
En los Linux actuales las terminales virtuales se acceden con ctrl+alt+Fn donde Fn es una tecla de función F1-F6 en la configuración canónica.
El proceso getty es iniciado por init, y por lo tanto configurado en /etc/inittab.
En sistemas con mucha memoria RAM, es prácticamente despreciable el uso getty hace de recursos. Pero puede darse el casos que Linux tuviera que correr como un sistema "embebido" o que el hardware que vayamos usar no tenga GB de memoria sino algunos MBs. Un ejemplo también podría ser la Raspberry Pi. Entonces ahorrar algo de consumo de RAM podría ayudar.
Veamos el consumo inicial de memoria de los procesos gettys corriendo:


En los campos VSZ (Virtual Size) y RSS (Resident Set Size) nos podemos hacer una idea de la memoria que están usando las gettys tradicionales. Sin entrar en los detalles acá de VSZ y RSS más info se puede encontrar aquí
http://www.linuxquestions.org/questions/linux-hardware-18/why-is-vsz-more-than-rss-in-ps-aux-even-if-i%27m-not-using-any-swap-663109/

ngetty entra en juego

ngetty a diferencia de getty no inicia N procesos dependiendo de cuántas terminales virtuales estemos usando. ngetty es un demonio único, y su uso de recursos es a demanda. Según indica su autor, Nikola Vladov, "ngetty es un demonio que inicia sesiones de login en consolas de terminales virtuales bajo demanda. Es un buen reemplazo de todos aquellos procesos gettys iniciados por init que, la mayor parte del tiempo, sólo toman memoria. ngetty, cuando se compila usando dietlibc el binario ngetty solo tiene 2k y usa mucha menos memoria que getty".
Esas y otras informaciones sobre ngetty se pueden encontrar en el site oficial del proyecto: http://riemann.fmi.uni-sofia.bg/ngetty/

En Debian, para instalar ngetty es tan simple como:

aptitude install ngetty

Antes de reemplazar definitivamente ngetty se puede hacer una prueba para verificar el comportamiento, como se indica en el site de ngetty. Para eso editar /etc/inittab y agregar la si:

1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
# 4:2345:respawn:/sbin/mingetty tty4
# 5:2345:respawn:/sbin/mingetty tty5
# 6:2345:respawn:/sbin/mingetty tty6
# Run ngetty in standard run-levels

#Config de ngetty en ttys 4,5 y 6
ng:2345:respawn:/sbin/ngetty 4 5 6
Aquí se han comentado las getty originales de las tty 4, 5 y 6. Es decir las que se acceden con ctrl+alt+F4, F5 o F6.

con init q podemos hacer que el sistema haga un reload de inittab, pero si se quiere para más seguridad se puede dar un reboot o pasar a modo single-user y luego a un runlevel multiusuario.

init q

Entonces si con ctrl+alt+F4, F5 o F6 podemos acceder bien y loguearnos en esas terminales virtuales, entonces podemos pasar a deshabilitar definitivamente getty:

# 1:2345:respawn:/sbin/mingetty tty1
# 2:2345:respawn:/sbin/mingetty tty2
# 3:2345:respawn:/sbin/mingetty tty3
# 4:2345:respawn:/sbin/mingetty tty4
# 5:2345:respawn:/sbin/mingetty tty5
# 6:2345:respawn:/sbin/mingetty tty6

# Run ngetty in standard run-levels
ng:2345:respawn:/sbin/ngetty 1 2 3 4 5 6

Aquí ngetty se iniciará en los runlevels estándares 2, 3, 4 y 5 y habilitará ttys (o consolas virtuales) de 1 a 6 (ctrl+alt+F1 hasta F6).

Comparemos ahora el consumo de memoria:


Comparemos los valores de VSZ y RSS y veremos que los valores de ngetty son notablemente menores a las que acumulan todos los procesos getty canónicos.
En sistemas muy antiguos, o en hard donde Linux tenga que consumir menos recursos ngetty puede hacer alguna diferencia.

En la Raspberry Pi

En la RasPi, aunque mucho de nosotros no usemos las consolas virtuales, ngetty es una forma de reducir el uso de ram, sin deshabilitar el acceso a las ttys por completo.

# Note that on most Debian systems tty7 is used by the X Window System,
# so if you want to add more getty's go ahead but skip tty7 if you run X.
#
#1:2345:respawn:/sbin/getty --noclear 38400 tty1
#2:23:respawn:/sbin/getty 38400 tty2
#3:23:respawn:/sbin/getty 38400 tty3
#4:23:respawn:/sbin/getty 38400 tty4
#5:23:respawn:/sbin/getty 38400 tty5
#6:23:respawn:/sbin/getty 38400 tty6

ng:123:respawn:/sbin/ngetty 1 2 3 4 5 6

# Example how to put a getty on a serial line (for a terminal)
#
#T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100
#T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

# Example how to put a getty on a modem line.
#
#T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3


#Spawn a getty on Raspberry Pi serial line
T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Nótese la línea final, en la que dejé un proceso para getty, ya que esa es la consola serial que la RasPi tiene disponible a través del puerto serie ttyAMA0, ubicado en el GPIO (no son niveles RS-232, así que cuidado. Hace falta hardware para adaptar los niveles). Si la quisiéramos deshabilitar se puede comentar, claro.
Continuar »

jueves, 19 de septiembre de 2013

Reducir ciclos de escritura en almacenamiento flash/USB

Complemento aquí algunas configuraciones que pueden ayudar a alargar la vida útil de medios de almacenamiento como las tarjetas SD o los USB stick cuando los usamos como soporte del sistema de archivos, por ejemplo en la Raspberry Pi.


En otro lugar ( http://www.equiscentrico.com.ar/2013/09/raspberry-pi-crear-initramfs-para-usar.html ) he detallado el procedimiento que seguí para usar UUID desde el inicio del bootstraping, para lo cual fue necesario recompilar el kernel de raspbian y crear una imagen initrd para que todo funcionara junto.

Aquí voy a agregar unos tips simples para reducir un poco la "pisada" del sistema sobre el sistema de archivos principal, tratando de prolongar la vida útil de medios como las tarjetas SD o los USB stick, que de por sí tienen un ciclo de vida mucho más reducido que otros medios de almacenamiento.

Por defecto el sistema de archivos que usa Raspbian para la partición raíz es ext4 (con journalling).
/etc/fstab tiene por defecto una configuración muy importante:

/dev/mmcblk0p2 / ext4 defaults,noatime 0 1

La opción de montaje "noatime" es vital en la Raspberry porque por defecto Linux utilizaría la opción "atime", que escribe timestamps en el disco cada vez que lee algo. Esa opción no plantea problemas para un disco duro, pero sería fatal para una tarjeta SD.

Bien, además de eso podría reducirse un poco más la pisada sobre el sistema de archivos de raspberry:

Yo pensaba utilizar ext2 para el sistema de archivos raíz, porque aquella versión no usaba journalling. Pero esa feature también puede deshabilitarse en un sistema de archivos tipo ext4. Para eso, tenemos que montar el sistema de archivos en otra máquina

# dumpe2fs /dev/sdf1 | grep -i journ
dumpe2fs 1.42.5 (29-Jul-2012)
Filesystem features: has_journal ext_attr resize_inode dir_index filetype
extent flex_bg sparse_super large_file huge_file uninit_bg dir_nlink extra_isize
Journal inode: 8
Journal backup: inode blocks
Journal features: journal_incompat_revoke
Journal length: 32768
Journal sequence: 0x000001c1
Journal start: 0

Entonces, deshabilitamos journalling

# tune2fs -O ^has_journal /dev/sdf1
tune2fs 1.42.5 (29-Jul-2012)

Y ahora se ve que no tenemos journalling habilitado:

# dumpe2fs /dev/sdf1 | grep -i features
dumpe2fs 1.42.5 (29-Jul-2012)
Filesystem features: ext_attr resize_inode dir_index filetype extent
flex_bg sparse_super large_file huge_file uninit_bg dir_nlink extra_isize

Por si acaso chequeamos la integridad del F.S:

# e2fsck /dev/sdf1
e2fsck 1.42.5 (29-Jul-2012)
rootfs: clean, 73586/262144 files, 443671/1048576 blocks

Ahora arrancamos la RasPi y podemos verificar que el journalling del F.S no
esté habilitado entre las features.


Logs en RAM:

Esta opción es muy simple pero puede contribuir a reducir la pisada.

Podemos agregar en /etc/fstab las siguientes dos entradas:

# FSs en RAM
none /var/log tmpfs size=1M,noatime 0 0
# Si quisieramos tambien /var/run
none /var/run tmpfs size=1M,noatime 0 0

De esa forma los f.s /var/log y /var/run que son los que tienen mayores actualizaciones, se guardarán en RAM con un límite de 1Mb cada uno.

Los logs serán volátiles por lo cual si la RasPi presentara algun problema y precisaramos guardar logs persistentemente tendríamos que comentar la entrada para /var/log.

Más info sobre tmpfs en *nix: http://en.wikipedia.org/wiki/Tmpfs

Continuar »

lunes, 9 de septiembre de 2013

Raspberry Pi crear initramfs para usar UUID u otras features

Estas líneas surgieron a propósito de una incomodidad: no poder usar UUID para identificar la partición del sistema de archivos raíz en mi Raspberry Pi. Eso me llevó a la sospecha de que para hacerlo funcionar sería necesario crear un sistema inicial de archivos en RAM, más conocido como initramfs. Siguen aquí los pasos para crear esa configuración, que fueron mucho más sencillo de lo que yo esperaba.


Estas notas son un borrador ya que resta probar que la configuración sea estable, pero por el momento viene funcionando sin problemas.
Aclaración: si vas a hacer esto, está claro que es por tu cuenta y riesgo. Para hacerlo, es mejor contar con una SD de pruebas, hacer backup y todo lo que consideres apropiado para la integridad de tus datos.



Estas pruebas me llevaron a reforzar más aún un argumento que se está convirtiendo en mi credo: "La pequeña Raspberry Pi se apoya en los hombros de un gigante", ese gigante es Linux, pero también Debian porque en el caso de Raspbian la Raspberry Pi es heredera de las dos décadas de trabajo de la comunidad mundial de Debian. Lo digo, porque para que crear un initramfs sea una tarea simple es porque se pudieron usar las herramientas initramfs-tools de Debian, encargadas de la magia de la trastienda de la creación del initramfs. Sin Linux la Raspberry Pi sería un pedacito de fierro del tamaño de una tarjeta de crédito, y poco más.

Incomodidad inicial

Para experimentar y entender cómo funcionaba el proceso de boot de la Raspberry Pi decidí crear una tarjeta SD (de 512 Mb que me facilitara mi amigo @DiegoRAM). Esa tarjeta SD sólo contiene la partición /boot, que guarda el firmware Raspberry Pi y el kernel Linux. Por cómo es la arquitectura de la Raspberry Pi, hay que recordar que es obligatoria usar una tarjeta SD, con sistema de archivos tipo VFAT.
La partición raíz la instalé en un USB stick de 8Gb ¿El motivo? Sólo experimentar, per-jodere o "Just for fun". Para ciertas configuraciones, en las que se requiera uso intensivo de escritura en el siste de archivos, ej un servidor web que usara un base de datos en la misma Raspberry Pi resultaría conveniente "aislar" las particiones de datos (la raíz y quizá otros F.S como /var) fuera de la tarjeta SD de inicio.
Queda claro entonces que para estas pruebas usé un usb stick (8Gb) pero podría haberse usado un disco duro, por ejemplo.

Cómo crear los sistemas de archivos y copiar los archivos no lo detallo aquí, para no extenderme demasiado. Es simplemente usar herramientas *nix estándar como fdisk, mkfs... rsync. En resumen, tenemos dos particiones creadas, la /boot en la SD 512 Mb y la raíz (/) en el USB stick, ambas con los archivos estándares contenidos en la iso de Raspbian.

La configuración por defecto de los archivos que componen el firmware RasPi y el kernel trae un arhivo llamado cmdline.txt que es el encargado de pasarle los parámetros al kernel, en momento de boot:

pi@raspberrypi ~ $ cat /boot/cmdline.txt.ori
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

boot= le indica al kernel dónde debe buscar el File System raíz (/). Por defecto, en la imagen de Raspbian ese F.S está en la segunda partición de la SD, como en este caso ésta no existe le indicamos que la busque en la partición del USB stick:

pi@raspberrypi ~ $ cat /boot/cmdline.txt.ori
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1 root=/dev/sda1 rootfstype=ext4 elevator=deadline rootwait

También debe alterarse el /etc/fstab:

proc /proc proc defaults 0 0
/dev/mmcblk0p1 /boot vfat defaults 0 2
#/dev/mmcblk0p2 / ext4 defaults,noatime 0 1
#/dev/sda1 / ext4 defaults,noatime 0 1
UUID=fa5e974b-7360-45c3-9f35-67a090f34bdd / ext4 defaults,noatime 0 1
# a swapfile is not a swap partition, so no using swapon|off from here on, use dphys-swapfile swap[on|off] for that

Como se ve, el montaje de la partición raíz original ( /dev/mmcblk0p2 ) está comentado y reemplazado por el FS contenido en el usb stick.


Mientras hacía esto percibí que muchas personas que utilizan un sistema de archivos externos en la Raspberry Pi en realidad utilizan la partición raíz /dev/mmcblk0p2 (en cmdline.txt) y luego montan el FS raíz en un segundo paso en /etc/fstab. Esto no tiene nada de malo, sólo que agrega un paso extra al proceso de boot. En caso de que el FS root en la SD fallara la RasPi no iniciaría.

Hasta este punto todo funcionaba bien la RasPi booteaba sin problemas, todo funcionaba como de costumbre.
Bien, he aquí cómo se originó el problema. No habría mucho problema siempre y cuando en cmdline.txt pasaramos al kernel el parámetro root=/dev/sda1 o cómo el kernel se dignase de identificar nuestro usb stick. Quien lleve un tiempo usando linux, discos scsi, s-ata o pendrives conocerá, algun problema puede ocurrir: el nombre del dispositivo puede cambiar. Ejemplo si alguna vez booteáramos la RasPi con otro pendrive conectado nada asegurará que nuestro usb stick (o hd) siga llamándose /dev/sda1.
Por eso yo quería usar UUID Universal Unique Identifier (véase http://en.wikipedia.org/wiki/Uuid ). Ese es el modo en que el kernel, en cualquier arquitectura puede identificar un dispositivo de forma más confiable.

Los UUID se pueden ver con blkid:

pi@raspberrypi ~ $ blkid
/dev/mmcblk0p1: SEC_TYPE="msdos" LABEL="boot" UUID="7709-6D92" TYPE="vfat"
/dev/sda1: LABEL="rootfs" UUID="fa5e974b-7360-45c3-9f35-67a090f34bdd" TYPE="ext4"

Aquí vemos que mi FS en el usb stick tiene la UUID=fa5e...blah...blah.

La solución debía ser simple, tan simple como agregar la UUID en el cmdline.txt, inclusive así se menciona en ciertos posts:

cat /boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1 root=UUID=fa5e974b-7360-45c3-9f35-67a090f34bdd rootfstype=ext4 elevator=deadline rootwait rootdelay=5

Pero... Así la cosa no funcionaba. El bootloader (configurable a través de cmdline.txt) le pasa el parámetro al kernel, pero este no puede identificar la partición por su UUID. Una vez que el kernel se cargaba, no hay problema en /etc/fstab ese problema no existe.
Luego de investigar un poco llegué a la conclusión que el bootloader no podía pasar así por así la UUID al kernel. Hacía falta un FS de inicio en RAM, más conocido como initramfs o initrd según su variante.
Para llegar a esta conclusión este thread fue fundamental http://forum.stmlabs.com/showthread.php?tid=9966.


Mundo PC / Mundo RasPi


La mayoría de las distribuciones actuales de Linux/GNU utilizan entre las diferentes etapas del proceso de inicio o boot un sistema de archivos en memoria RAM, cuyo objeto es cargar módulos del kernel indispensables para poder continuar con el proceso. De esa forma, la "pisada" del kernel en memoria se reduce porque sólo se van cargando los módulos bajo demanda.
Por defecto, el firmware Raspberry Pi no utiliza un initramfs. Para usar UUID había que crearlo.

Como el kernel stock (por lo menos el de raspbian) no trae por defecto el soporte para initramfs había que compilarlo:

UPDATE 10/10/2013: Hicimos un pedido a los mantenedores del firmware y el kernel Raspberry Pi https://github.com/raspberrypi/linux/issues/392 y muy amablemente y en poquísimos días nos agregaron el feature en el stock kernel de testing. Eso simplifica mucho este proceso porque no se requiere ya recompilar el kernel y además, con sucesivos rpi-updates no vamos a perder el soporte para initrd.
Para bajar el stock kernel de pruebas (3.10.15+) al momento de escribir estas líneas:

# export BRANCH="next" && rpi-update

Luego de clonar el git de desarrollo debe instalarnos el kernel de la rama "next" (testing) con el soporte para initrd, que luego del reboot se puede verificar con:

$ zcat /proc/config.gz | grep -i initr
CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""

El que opte por usar este kernel stock, puede seguir con los pasos descritos en "Creación del initramfs"

Claro, el que por algún motivo lo desee puede seguir construyendo su kernel "custom", con los pasos descriptos abajo.

1) Compilar

En elinux.org, el site con la mejor documentación sobre Rasberry Pi se describe el paso-a-paso para compilar un kernel, inclusive haciendo cross-compilling: http://elinux.org/RPi_Kernel_Compilation
Siguiendo el paso-a-paso del roadmap de la doc que traduzco abajo, compilar en un Debian 386 fue mucho más sencillo de lo que esperaba:


1) Obtener el código fuente del kernel más reciente, con las características del Raspberry Pi (https://github.com/raspberrypi/linux) en este caso bajé el tarball: $wget https://github.com/raspberrypi/linux/archive/rpi-3.6.y.tar.gz
2) Establecer la variable del entorno KERNEL_SRC que apunte al lugar del código fuente: ( e.g. export KERNEL_SRC=/home/me/linux/ )
3) Obtener el compilador para ARM variante raspberrypi (git clone https://github.com/raspberrypi/tools)
4) Establecer variable de entorno CCPREFIX para apuntar a la localización del las herramientas de compilación ( e.g. export CCPREFIX=/home/me/tools/arm-bcm2708/arm-bcm2708-linux-gnueabi/bin/arm-bcm2708-linux-gnueabi- )
5) Desde el directorio donde se ubica el kernel, limpiar con "make mrproper"
6) Copiar la config default de un raspbian, copiando el archivo /proc/config.gz desde un Raspbian corriendo (porque el fs /proc corre en memoria).
7) En el directorio del fuente del kernel zcat config.gz > .config. Y correr "ARCH=arm CROSS_COMPILE=${CCPREFIX} make oldconfig"
8) Modificar la configuración del kernel ya sea alterando .config file o usando "ARCH=arm CROSS_COMPILE=${CCPREFIX} make menuconfig". Deberemos buscar la opción para habilitar initramfs, bajo la sección "General Setup" como se puede ver en la imagen.

9) Construir el nuevo kernel usando "ARCH=arm CROSS_COMPILE=${CCPREFIX} make" (ir por una cervecita)
10) Establecer variable de entorno MODULES_TEMP para apuntar a la localización del fuente ( e.g. export MODULES_TEMP=/home/me/modules/ )
11) Aislar los módulos del nuevo kernel usando "ARCH=arm CROSS_COMPILE=${CCPREFIX} INSTALL_MOD_PATH=${MODULES_TEMP} make modules_install"
12) Desde la ubicación de las herramientas de compilación en el directorio mkimage correr: "./imagetool-uncompressed.py ${KERNEL_SRC}/arch/arm/boot/zImage"
13) Mover el kernel resultante como kernel.img al directorio /boot/ de la raspberry Pi, previamente habiendo guardado una copia del original (mv /boot/kernel.img /boot/kernel.img.stock)
14) Empaquetar los módulos en un archivo (ej. tar) para que queden en el top-level de la jerarquía, con la estructura como sigue:
./firmware
./firmware/brcm
./firmware/edgeport
./firmware/emi26
...
./modules
./modules/3.6.11+
./modules/3.6.11+/kernel
./modules/3.6.11+/kernel/lib
./modules/3.6.11+/kernel/fs
...
15) Mover el archivo con los módulos al directorio raiz de la raspberry Pi y extraerlos, de modo que se sobre-escriban en /lib/firmware y /lib/modules. Previamente hacer backup de esos directorios.
16) Esto no fue necesario porque ya tenía el firmware en /boot (git://github.com/raspberrypi/firmware.git)

17) Transferir el contenido del directorio firmware/hardfp/opt al directorio /opt de Raspberry pi.
18) Reboot de la Raspberry Pi


Creación del initramfs


Ahora se debe crear el initramfs, que gracias a las herramientas provistas por Rasp(DE)bian resulta muy sencillo.

Si no está instalado en la Raspberry vamos a precisar el paquete initramfs-tools:

# aptitude install initramfs-tools

Habiendo booteado con el kernel "custom", verificamos el soporte para initramfs:

root@raspberrypi:~# uname -r
3.6.11


root@raspberrypi:~# zcat /proc/config.gz | grep -i initr
CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""
Nos muestra que este kernel fue compilado con el parámetro de soporte para initrd.

Entonces, a crear la el FS:

# update-initramfs -c -k `uname -r` -v

Aquí el único cuidado es ingresar la versión del kernel "destino" del fs init. Si ya booteamos con el kernel que vamos usar podemos usar uname -r, si no más vale ingresar la versión del kernel a mano.

Eso creará el archivo /boot/initrd.img-3.6.11

El contenido del F.S de inicio se puede ver fácilmente con:

root@raspberrypi:~# lsinitramfs /boot/initrd.img-3.6.11 | less


Ahora debe alterarse el archivo config.txt del firmware Raspberry Pi para usar initramfs, agregamos esta línea:

# Test de initramfs, generado con initramfs-tools de DEBIAN
initramfs initrd.img-3.6.11 followkernel


A pesar de que hay cierta controversia en este punto, si al parámetro initramfs debe pasarsele una direccion
de memoria donde cargar el f.s, la opción followkernel funcionó. Aclaro, usando la versión más reciente del
firmware.


Ahora boot usando UUID (que no funcionaba sin el initrd):

pi@raspberrypi ~ $ cat /boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1
root=UUID=fa5e974b-7360-45c3-9f35-67a090f34bdd rootfstype=ext4 elevator=deadline rootwait rootdelay=5

Podemos verificar que haya arrancado:

pi@raspberrypi ~ $ dmesg | grep -i uuid
[ 0.000000] Kernel command line: dma.dmachans=0x7f35 bcm2708_fb.fbwidth=656 bcm2708_fb.fbheight=416
bcm2708.boardrev=0xd bcm2708.serial=0xe90f78bb smsc95xx.macaddr=B8:27:EB:0F:78:BB
sdhci-bcm2708.emmc_clock_freq=100000000 vc_mem.mem_base=0x1ec00000 vc_mem.mem_size=0x20000000
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1
root=UUID=fa5e974b-7360-45c3-9f35-67a090f34bdd rootfstype=ext4 elevator=deadline rootwait rootdelay=5


Hacerlo requiere un cierto conocimiento y tener un background con Linux, los scripts de Debian initramfs-tools hicieron la cosas mucho más sencilla de lo que habría sido crear un initrd de la nada.

Algo que habrá que tener en cuenta, a partir de este momento habrá que tener cuidado con rpi-update, porque seguro va a sobreecribir el kernel, y los archivos de config.












Continuar »

miércoles, 21 de agosto de 2013

Montar partición contenida en imagen

Las particiones contenidas en una imagen pueden extraerse con la herramienta dd, pero es más eficaz montarlas con la opción loop y offset de mount. Esto puede servir para ver o "trabajar" a partir de las imágenes de Raspbian u otras distros para Raspberry Pi.



En este ejemplo trabajamos con la imagen 2013-07-26-wheezy-raspbian.img, de raspbian.

$ /sbin/fdisk -ul 2013-07-26-wheezy-raspbian.img
GNU Fdisk 1.2.4
Copyright (C) 1998 - 2006 Free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.


Disk /mnt/backup/RaspberryPi/raspbian_img/2013-07-26-wheezy-raspbian.img: 1 GB, 1932940800 bytes
255 heads, 63 sectors/track, 235 cylinders, total 3775275 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/mnt/backup/RaspberryPi/raspbian_img/2013-07-26-wheezy-raspbian.img1 8192 122879 64228
c FAT32 LBA
Warning: Partition 1 does not end on cylinder boundary.
/mnt/backup/RaspberryPi/raspbian_img/2013-07-26-wheezy-raspbian.img2 122880 3788799 1831410
83 Linux
Warning: Partition 2 does not end on cylinder boundary.

Las opciones a fdisk: -u indica que use como unidad bloques y -l lista.

Lo que nos interesa son los sectores de inicio ("Start"), para pasarselos a mount con el parámetro offset. Vemos que el sector de inicio de la particion de boot (FAT32) es 8192. Ese número lo multiplicamos por 512 (el tamaño de cada bloque). Nos da: 4194304.

Entonces, como root montamos la particion:

Creamos los puntos de montaje:
mkdir boot raiz

Y montamos la partición de boot de raspbian, que contiene todo el firmware y la imagen del kernel:

# mount -o ro,loop,offset=4194304 -t auto 2013-07-26-wheezy-raspbian.img boot

# ls boot/
bootcode.bin cmdline.txt config.txt fixup_cd.dat fixup.dat fixup_x.dat issue.txt kernel_emergency.img
kernel.img start_cd.elf start.elf start_x.elf

Ahora la raiz de Raspbian:

# mount -o ro,loop,offset=62914560 -t auto 2013-07-26-wheezy-raspbian.img raiz/

Véase que offset=62914560 viene de multiplicar el sector de inicio de la partición 122880 * 512.

# ls raiz/
bin boot dev etc home lib lost+found media mnt opt proc root run sbin selinux srv sys tmp
usr var

Veamos los tamaños de las particiones:

# df -h boot/
S.ficheros Tamaño Usados Disp Uso% Montado en
/dev/loop0 56M 19M 38M 33% /mnt/backup/RaspberryPi/raspbian_img/bootcode

La de boot tiene 56M aprox. Y la raiz: 1,8G:

# df -h raiz
S.ficheros Tamaño Usados Disp Uso% Montado en
/dev/loop1 1,8G 1,4G 266M 85% /mnt/backup/RaspberryPi/raspbian_img/raiz

Continuar »

sábado, 10 de agosto de 2013

Gabinete para Raspberry Pi

A estas alturas la Raspberry Pi no necesita mayores presentaciones, porque se ha vuelto bastante popular.
Para aquellos que no la conozcan aún, la Raspberry Pi es una SBC (Single Board Computer) del tamaño de una tarjeta de crédito aproximadamente. Fue lanzada en Gran Bretaña a principios de 2012. Si bien su hardware está quedando un poquito antiguo (viene con una CPU ARM11, de la arquitectura ARMv6) lo más revolucionario es su precio: 35 dólares estadounidenses.
Aquí muestro un gabinete estándar que fue adaptado para alojar la Raspberry Pi en su interior junto con un hub usb, periférico indispensable.

Por su precio y tamaño tiende a pensarse que la Raspberry Pi es la mejor opción para sistemas embebidos o un appliance que tienden a correr un número limitado de aplicaciones. No tengo nada contra eso, pero no hay que olvidar que la Raspberry Pi es una computadora de uso general, y por lo tanto sus usos pueden ser sumamente variables, pero en todos los casos aprovechando las capacidades que ofrece GNU/Linux: ser un sistema multiusuario, multitarea y, hasta donde sé, multiproceso (con algunas limitaciones) Véase: http://www.raspberrypi.org/phpBB3/viewtopic.php?f=2&t=5326
Creo, sinceramente, que una vez que uno definió las "aplicaciones" o si hará de su RasPi un appliance o una compu de uso general, uno tiene que encontrar el gabinete que mejor se adapte a la función (ahora que lo escribo esto parece super Bauhaus loco).

La idea inicial de este proyecto fue: intentar hacer un gabinete más o menos del tamaño de un thinclient, que en su interior tuviera la Raspberry Pi, con su tarjeta SD algo más protegida que en los gabinetes estándar y un hub USB. Éste último es el periférico indispensable, porque no hay que perder de vista que la corriente máxima que puede ofrecer cada puerto USB es de 500 mA (digamos algo menos), y mucho más que esa corriente no puede circular por el circuito de protección de la RasPi. El síntoma más evidente de problemas de alimentación o una fuente insuficiente suele ser cuelgues inesperados de la RasPi. Otro punto al que hay que prestarle atención es que algunos cables USB suelen ser muy malos, porque sus conductores son extremadamente delgados, lo que produce que a mayor consumo mayor sea la caída de tensión en el cable. Después de todo todo conductor se comporta como una resistencia que responde a las leyes del viejo Ohm.
El único requisito que me impuse al comenzar es que no modificaría en nada la placa original de la RasPi. Si quisiera cambirla de gabinete sólo la tendría que desatornillar y a otra cosa. Como contrapartida, esa decisión implica ocupar más espacio en el interior del gabinete.

Mi proyecto original era usar un gabinete de aluminio, pero para esta primera RasPi opté por uno plástico. La verdad es que es muy sencillo trabajar. El gabinete lo compré en http://www.gabiart.com.ar.

La verdad que diseño de la RasPi complica bastante hacer algunos moddings, ponerla en gabinetes que no sean los estándares. La razón principal: que tiene conectores de I/O en tres de sus caras, y en la restante el zócalo de la tarjeta SD. Como el objetivo era no desoldar nada de la placa, lo que hice fue hacer "extensiones" para cada uno de los conectores, a excepción del hdmi, el cual se accede directamente.
Esta foto muestra ya el trabajo en el frente y tapa posterior casi terminado. Atrás a la izquierda el jack para la entrada de +5v que alimenta la RasPi como el Hub. En el centro de la parte posterior, la abertura para el plug hdmi y a la derecha el jack RJ-45 para la ethernet. En esa imagen aún no había agregado los orificios para los jack de audio y RCA de video compuesto.
Todos los agujeros fueron hechos solamente con un par de mechas y limas para darles la forma adecuada.

Lo que sí modifiqué un poquito fue el hub USB. Utilicé uno chinísimo (con DOC: Denominación de Origen Controlada) si se me permite la humorada. En él, desoldé los jacks USB. Los nuevos jacks del frente los soldé en una plaqueta universal y le hice extensiones con cable plano, que van hasta la plaquita del USB.
Otro de los USB va en la parte de atrás, como se ve en la imagen.

Sobre la base del gabinete pegué los separadores plásticos (con la Gotita, trademark by PoxyPol) donde se atornilla la placa de la RasPi.

En esta segunda imagen se pueden ver más de los componentes, ya montados. La RasPi, el hub chinísimo, con sus extensiones. En la de abajo, ya con todo conectado y funcionando.
La forma de alimentar la RasPi merece un comentario breve. Por qué sus diseñadores le habrán puesto un jack micro-usb cuando la mayoría de las SBC viene con un jack de dos conductores? Yo creo que para que forzando a los usuarios a usar un cargador de celular se evitara aplicar una tensión incorrecta. Supongo.
Pero lo cierto es que por el micro-USB no creo que pueda circular demasiada corriente (la RasPi modelo B requiere a la fuente unos 700mA). Por eso, encontrar un conector micro-usb para conectarle fue la parte más dificil del proyecto, porque no son muy populares. Queda por averiguar si es que la placa se puede alimentar por algún PIN del GPIO, ya que eso ayudaría.




Aquí se ve el aspecto exterior, al frente y posterior.

Work in progress

Así es como está el estado actual de este proyecto, que me dió algo más de diversión los fines de semana. Quedan cosas por hacer, como intentar darle algún acabado que le otorgue algo de eye-candiness. Eso no es sencillo, pero ya se verá.
Un tema que me preocupaba un poco era la temperatura del SoC de la RasPi, la pastilla que contiene la CPU y la GPU. La estoy usando sin overclocking, y sin disipadores. De momento todo va bien. Pero tiendo a pensar que si se quiere hacer overclocking u overvolting habrá que buscar alguna solución térmica, como abertura para que el aire circule o los indeseables ventiladores.


Continuar »